
Using Eclipse to develop grid services

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. Introduction.. 2
2. Setting up .. 5
3. Creating and configuring the project.. 13
4. Adding the project files .. 22
5. Working with a WS-Resource: Getting properties 29
6. Generate stubs and deploy the grid service 36
7. Running and Debugging using the Tomcat container 39
8. Summary ... 47

Using Eclipse to develop grid services Page 1 of 49

Section 1. Introduction

Who should take this tutorial?

This tutorial illustrates how to use the versatile Eclipse environment to facilitate
development of Globus Toolkit V4 (GT4) grid services. The tutorial is written for
Web service and grid developers who would like the convenience of
orchestrating the whole grid service development process from within the
Eclipse IDE on Windows-based platforms.

GT4 grid services can be tedious to develop because they frequently require
the developer to juggle many artifacts (source files, WSDLs, client and server
stubs, etc., many of which need to be auto-generated) and configuration steps
(various iterations of compilation, linking, deployment, etc.). Without an
integrated development environment (IDE) such as Eclipse, you must switch
between many tools (editors, command shells, file managers, build tools,
application containers, etc.) while iterating through the development process.
With the right plug-ins and configuration, the Eclipse IDE can be used to
manage all of these artifacts within a single project abstraction and coordinate
all of the useful development activities from coding to deployment to debugging.
By embedding the Apache Tomcat Web services container within Eclipse, any
updates to the grid service implementation can be immediately reflected in the
actively running grid service.

This is a tool tutorial (as opposed to a conceptual or programming tutorial) that
walks through the creation of a simple WS-Resource within the Eclipse
environment. A general familiarity with Java technology, Eclipse, Web services,
the WS-Resource Framework (WSRF), and GT4 is recommended. (See
Resources on page 47 for links to tutorials for more information regarding these
subjects.

What is this tutorial about?

This tutorial illustrates how to configure an Eclipse project to coordinate the
development of a GT4 grid service. A GT4 grid service is a Web services-based
application that manages one or more "stateful resources," making it a
WS-Resource in accordance with WSRF.

The WS-Resource model is quickly becoming the fundamental paradigm for the
newest generation of service-oriented distributed computing infrastructures. The
WSRF is a group of specifications designed to ease the burden of implementing
and maintaining complex distributed systems by providing standard ways to
interact with "stateful" resources that are abstracted as WS-Resources.

The GT4 is a WSRF-compliant set of software components (and related tools)
from which developers can build distributed systems. Because of The Globus
Alliance's depth of experience in the grid and distributed computing fields and

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 49 Using Eclipse to develop grid services

the widespread use of previous versions of the tool kit, GT4 is poised to be the
premier enabling technology for grid services and applications.

In this tutorial, we are going to use the Eclipse IDE to develop, deploy, and
debug a simple stateful Web service that uses WSRF to keep state information.
This example Web service (ProvisionDirService) exposes the local file
system's directory hierarchy to remote grid clients. (A service or collection of
services that provision file system data into a grid is a common feature set for
many existing grid infrastructure products.) It will allow you to list the contents of
the current working directory and change the current working directory.

To get or change the current working directory, the ProvisionDirService
will expose the Cwd (Current working directory) Resource Properties.

The design pattern for this grid service follows the "Singleton with
ServiceResourceHome" pattern (as opposed to other patterns like the
"Factory/Instance" pattern), meaning that this WS-Resource consists of a Web
service paired with only one resource. The singleton resource in this case is a
Java class that keeps the current working directory resource property and
returns listings for that directory.

Although the operation of ProvisionDirService is not too complex, it is
useful to illustrate the steps we'll take to configure the Eclipse project in this
tutorial, and it also lays the groundwork for creating more complicated grid
services. We will cover the following:

° Setting up the required tools and components
° Creating the Eclipse project
° Adding the project files (don't worry -- the sources for these project files are

all provided for you in Resources on page47)
° Creating the build/deploy launch configuration that will facilitate the

automatic generation of the remaining artifacts, assembling the Grid Archive
(GAR), and deploying the grid service into the Web services container

° Using the launch configuration
° Running and debugging the grid service

(At the time of this writing, the first release of the GT4 IDE, an Eclipse plug-in
that handles some of the code generation tasks covered in this tutorial, has
been announced, but functionality is still incomplete.)

Prerequisites

To run the example from this tutorial, we'll need to obtain and install the
following components/tools. More information regarding each can be found in
the Setting up section.

° Sun Java SDK V1.4.2 (http://java.sun.com/j2se/1.4.2/download.html)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 3 of 49

http://java.sun.com/j2se/1.4.2/download.html

° Eclipse IDE (http://www.eclipse.org/downloads/index.php)
° Apache Jakarta Tomcat V5.0 (http://jakarta.apache.org/tomcat/)
° Sysdeo Eclipse Tomcat Launcher Plug-in V3.0

(http://www.sysdeo.com/eclipse/tomcatPlugin.html)
° GT4 WS Core
° globus-build-service (http://gsbt.sourceforge.net/content/view/14/31/)

About the author

Duane Merrill has been developing grid computing and distributed data
integration platforms for more than five years. He has been a contributor to the
Legion Project at the University of Virginia and a core developer for the Avaki
Corporation's distributed enterprise information integration product Avaki. He is
currently obtaining his doctorate in computer science at the University of
Virginia. He can be reached at duane@duanemerrill.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 49 Using Eclipse to develop grid services

http://www.eclipse.org/downloads/index.php
http://jakarta.apache.org/tomcat/
http://www.sysdeo.com/eclipse/tomcatPlugin.html
http://www-unix.globus.org/toolkit/downloads/development/
http://gsbt.sourceforge.net/content/view/14/31/
mailto:duane@duanemerrill.com

Section 2. Setting up

The Architecture

The Eclipse tool integration platform is a very popular, very extensible,
well-documented IDE that can be configured to host all of the useful
development activities from coding to deployment to debugging. We will use its
Java Project abstraction to manage the artifacts (source files, WSDLs, client
and server stubs, deployment configuration files, etc.) required by the
ProvisionDirService.

The coding aspect of development will be handled in the Java Perspective of
the Java Project. This Eclipse perspective provides the organization and editor
views to manage the ProvisionDirService sources.

The artifact generation/service deployment process will be handled by the
creation of a Launch Configuration that uses the Ant buildfiles supplied from the
globus-build-service and GT4 WS-Core distributions. With a single mouse-click,
this Launch Configuration will automate the process of:

° Generating the service stubs and parameter data structure classes
° Performing some tweaking to the service WSDL
° Assembling the service Grid Archive (GAR), which contains all the files and

information the Web Services container needs to deploy our service
° Deploying the GAR into the GT4 directory tree
° Deploying the GT4 WSRF into Tomcat

To completely contain the iterative (develop/deploy/debug) development
process within Eclipse, we need a mechanism for running and debugging the
ProvisionDirService. As a GT4 grid service, the ProvisionDirService
needs to be run within and managed by a Web services container. Although the
GTK ships with its own stand-alone Web services container, this tutorial
illustrates the use of the popular Apache Tomcat servlet container to host our
sample grid service because of its rich feature set that extends beyond the
simple hosting of grid services. We use the Sysdeo Tomcat Launcher plug-in to
integrate Tomcat into the Eclipse environment.

By this point, it is assumed that you have downloaded and installed the Sun
Java SDK V1.4.2. (This tutorial was written using V1.4.2.07.) Be sure to set the
JAVA_HOME system environment variable to the root of the SDK installation.
This can be done by right-clicking My Computer on the Windows desktop,
selecting Properties, selecting the Advanced tab, clicking the Environment
Variables button and adding JAVA_HOME to the list of System variables, as
shown in Figure 1.

Figure 1. Setting the JAVA_Home system environment variable

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 5 of 49

The remainder of this section reviews the remaining required tools and gives an
explanation of what each tool is for, as well as helpful information on setup and
configuration.

Eclipse

The Eclipse Platform is an extensible open-source tool integration platform for
"anything and yet nothing in particular." It provides building blocks and a
foundation for constructing and running integrated software development tools.
for this tutorial, we will be using it as a Java IDE.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 49 Using Eclipse to develop grid services

The Eclipse Platform distribution should be obtained and unzipped into the local
file system. For this tutorial, Eclipse V3.0.2 was installed into the
\dev\eclipse directory.

Eclipse normally uses the Java Runtime Environment (JRE) installed in the
\Program Files\Java directory, rather than a full JDK, but Tomcat must
have access to a JDK. If you have not done so already, add the JDK to the list
of installed JREs that Eclipse knows about. Go to the Window > Preferences
menu and open the Eclipse Preferences dialog. Select the Java > Installed
JREs page shown in Figure 2. Click Add to add the JDK to the list.

Figure 2. Add the JDK to Installed JREs

Check it to make it the default, as shown in Figure 3.

Figure 3. Setting the default JDK

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 7 of 49

Click OK to finish the configuration.

Tomcat

Apache Jakarta Tomcat is the servlet container used in the official Reference
Implementation for the Java Servlet and JavaServer Pages technologies. In this
tutorial, we use Tomcat as the Web services container for the GT4 WSRF Web
application.

The Tomcat distribution should be obtained and unzipped into the local file
system. For this tutorial, we'll install V5.0.28 in the \dev\jakarta-tomcat-5.0.28
directory.

Before we can run the "admin" and "manager" programs in Tomcat, we must
first define a user for this. Insert the following line into the
\dev\jakarta-tomcat-5.0.28\conf\tomcat-users.xml:

<user username="admin" password="admin" roles="admin,manager"/>

Sysdeo Tomcat Launcher

The Sysdeo Tomcat Launcher is an Eclipse plug-in necessary for managing the
Tomcat Web services container from within the Eclipse IDE. Although there are
several Tomcat plug-ins for Eclipse on the market, the (free) Sysdeo Tomcat
Launcher is ostensibly the most popular and well known. The Sysdeo Tomcat

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 49 Using Eclipse to develop grid services

Launcher adds several menu-bar buttons to Eclipse for the starting and
stopping of the embedded Tomcat container, and also registers the Tomcat
process with the Eclipse debugger.

The Sysdeo Tomcat Launcher plug-in should be obtained and unzipped into the
Eclipse plug-ins directory. (Its features will be made available the next time
Eclipse is started.)

Before using the plug-in, we need to configure several of its preferences. Go to
the Window > Preferences menu and open the Eclipse Preferences dialog.
Select the Tomcat page. Select Version 5.x radio button and fill in the Tomcat
Home textbox, as shown in Figure 4:

Figure 4. Setting the Tomcat version

Additionally, ensure that the JVM Settings page (shown in Figure 5) are
configured to use the JDK JRE (the Preferences page may need to be closed
and reopened if it wasn't closed after setting the JDK as an Installed JRE).

Figure 5. JVM Settings page

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 9 of 49

Finally, enter the manager role username/password in the Tomcat Manager
App page, as shown in Figure 6.

Figure 6. Tomcat Manager App page

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 49 Using Eclipse to develop grid services

GT4 WS-Core

The GT4 WS-Core is the Globus Toolkit implementation of the WSRF and the
Web Service Notification (WSN) family of standards. It provides the API and
tools for building stateful Web services (WS-Resources).

The GT4 WS-Core distribution should be obtained and unzipped to the local file
system. Download the V3.9.5 source-code distribution (so we can step into and
view the WS-Core source while debugging) and unzip it into \dev\GTK.

Additionally, we need to set a GLOBUS_LOCATION environment variable to
\dev\GTK; follow the same instructions as for setting the JAVA_HOME
environment variable described earlier in this section.

To build the WS-Core from source, you must first obtain the Apache Ant build
tool from (http://ant.apache.org/bindownload.cgi). To build it, open a CMD shell
and type the following:

D:\>cd %GLOBUS_LOCATION%\ws-core-3.9.5
D:\Dev\GTK\ws-core-3.9.5>ant all

This command builds and installs the WS-Core into \dev\GTK. If necessary, you
can find further build and administrative instructions for the WS-Core in the
WS-Core Administrators Guide.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 11 of 49

http://ant.apache.org/bindownload.cgi
http://www-unix.globus.org/toolkit/docs/4.0/common/javawscore/admin-index.html

The globus-build-service

The globus-build-service distribution is a Ant buildfile (and related shell
scripts) to assist with the building of GAR files. This buildfile is a variation of the
one used in the GT4 Programmer's Tutorial (see Resources on page 47). Obtain
the distribution and unzip these files into the \dev\GTK\etc directory.

The next section illustrates how to create a new Java Project for our
ProvisionDirService and shows how to prepare the project for the addition
of the service source files.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 49 Using Eclipse to develop grid services

Section 3. Creating and configuring the project

Create a new project

We start by creating a new Java Project called ProvisionDirService.
Select File > New > Project... and select Java > Java Project from the
selection wizard. Click Next and enter ProvisionDirService in the Project
Name textbox. Accept the remaining project creation defaults by clicking Finish.

Figure 7. New Java project dialog

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 13 of 49

Make the project a Tomcat project

The first thing we need to do is to make this project a "Tomcat Project." Doing
so enables Tomcat to run from .class files inside our project as soon as they
are compiled by Eclipse (which happens every time they are saved). Hence,
minor changes to the service logic will be reflected in the running service
without having to regenerate or redeploy any GARs. Open the project properties
page shown in Figure 8 (select Properties from the project's pop-up menu),
select the Tomcat page, and check the "Is a Tomcat Project" checkbox.

Figure 8. Project properties page

Click OK.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 49 Using Eclipse to develop grid services

Add project source to Tomcat source path

Now we need to add the project's source to the Tomcat source path. The last
step allows Tomcat to reload any updates to the implementation. This step
allows the live debugger to pull up the fresh source when debugging.

Go to Window > Preferences and select the Tomcat > Source Path page
(shown in Figure 9). Select the checkbox next to our ProvisionDirService
project.

Figure 9. Source Path page

Click OK.

Include the WS-Core classes as the GT4 Library

The second thing we need to do is to update the Java Build Path Libraries to
include the WS-Core JARs so the Eclipse editor will be able to find the WSRF
classes our grid service sources will import. Do this by opening the project
properties page (select Properties from the project's pop-up menu), selecting
the Java Build Path page, and clicking the Libraries tab. As you can see in
Figure 10, only the JRE System Library is currently imported.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 15 of 49

Figure 10. Updating the Java Build Path Libraries

Use the Add Library... button to add a user library and click Next.

Create the GT4 library

To create a user library from the GT4 library directory, use the User Libraries...
button. Click New... in the User Libraries dialog (see Figure 11) and create a
Library called GT4 Library.

Figure 11. Create a new user library

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 49 Using Eclipse to develop grid services

Click Add JARs... and select and add all of the JARs in
%GLOBUS_LOCATION%\lib to the library. Selecting OK and Finish leaves us
with the properly configured Libraries tab.

Finish the configuration

The Libraries tab should look like Figure 12.

Figure 12. Updated libraries tab

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 17 of 49

Click OK to finish the configuration.

Adding folders and packages

Before adding the service sources, we will need to create the folder and
package structure in which to put them.

Add the Navigator view by selecting Window > Show View > Navigator from
the menu.

To start with, we need to create the folder location in which to place the WSDL
document that describes our service interface. We do this by creating a New >
Package called schema.examples.ProvisionDirService so that a
schema/examples/ProvisionDirService/ path extends from the project
root (see Figure 13).

Figure 13. New Java package dialog

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 49 Using Eclipse to develop grid services

Go ahead and create the following additional four packages:

1. etc

2. build.classes

3. org.merrill.examples.services.provisiondir.impl

4. org.merrill.examples.clients.provisiondir

At this point, our Navigator view should resemble Figure 14.

Figure 14. Updated Navigator view

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 19 of 49

Setting the output destination

The last thing we need to do before adding source files to our project is
configure the project's build output destination.

We want Eclipse to compile our Java sources and put the .class files in
build/classes, so we need to go to the project Properties page again and
configure the Java Build Path page. Change the Default output folder to
/ProvisionDirService/build/classes.

However, we don't want Eclipse to copy nonsource files to the build output
folder. Expand the ProvisionDirService source folder, select Excluded and click
Edit.... In the Inclusion and Exclusion Patterns dialog, click the Add Multiple...
button and add the build, etc, and schema folders as exclusion patterns. The
Java Build Path page's Source tab should now look like Figure 15.

Figure 15. Source tab for Java Build Path page

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 49 Using Eclipse to develop grid services

Click OK. Now we can add the actual files.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 21 of 49

Section 4. Adding the project files

ProvisionDir.wsdl

The ProvisionDirService project is finally ready for its source files. There
are five of them, and they are described in the following subsections. (Tip: It is
usually easiest to use Eclipse's text editor to manipulate .wsdl or .xml files,
instead of having it launch external applications.)

The ProvisionDir.wsdl file is the XML document that describes the service
interface. It should be placed in the
schema/examples/ProvisionDirService project folder. The service
interface describes how the outside world can interact with our service,
specifically the operations that can be performed on it. The service interface is
often called the port type. The source for this WSDL document is:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ProvisionDirService"

targetNamespace="http://examples.merrill.org/provisiondir/ProvisionDirService"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://examples.merrill.org/provisiondir/ProvisionDirService"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/03/addressing"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsrlw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-Resource

Lifetime-1.2-draft-01.wsdl"
xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-Resource

Properties-1.2-draft-01.xsd"
xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-Resource

Properties-1.2-draft-01.wsdl"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
namespace=
"http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProp

erties-1.2-draft-01.wsdl"
location="../../wsrf/properties/WS-ResourceProperties.wsdl" />

<types>
<xsd:schema targetNamespace="http://examples.merrill.org/provisiondir/Provision
DirService"

xmlns:tns="http://examples.merrill.org/provisiondir/ProvisionDirService"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:import
namespace="http://schemas.xmlsoap.org/ws/2004/03/addressing"
schemaLocation="../../ws/addressing/WS-Addressing.xsd" />

<!-- Requests and responses -->

<xsd:element name="listDir">
<xsd:complexType/>

</xsd:element>
<xsd:element name="listDirArrayResponse">

<xsd:complexType>

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 49 Using Eclipse to develop grid services

<xsd:sequence>
<xsd:element name="a" type="xsd:string" minOccurs="0" maxOccurs="un

bounded"/>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="changeCwd" type="xsd:string"/>
<xsd:element name="changeCwdResponse">

<xsd:complexType/>
</xsd:element>

<!-- Resource properties -->

<xsd:element name="Cwd" type="xsd:string"/>

<xsd:element name="ProvisionDirResourceProperties">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="tns:Cwd" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

<message name="listDirInputMessage">
<part name="parameters" element="tns:listDir"/>

</message>
<message name="listDirOutputMessage">

<part name="parameters" element="tns:listDirArrayResponse"/>
</message>

<message name="changeCwdInputMessage">
<part name="parameters" element="tns:changeCwd"/>

</message>
<message name="changeCwdOutputMessage">

<part name="parameters" element="tns:changeCwdResponse"/>
</message>

<portType name="ProvisionDirPortType"
wsdlpp:extends="wsrpw:GetResourceProperty"
wsrp:ResourceProperties="tns:ProvisionDirResourceProperties">

<operation name="listDir">
<input message="tns:listDirInputMessage"/>
<output message="tns:listDirOutputMessage"/>

</operation>

<operation name="changeCwd">
<input message="tns:changeCwdInputMessage"/>
<output message="tns:changeCwdOutputMessage"/>

</operation>

</portType>

</definitions>

Although WSDL documents are generally not meant for human consumption,
there are several parts you should be aware of:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 23 of 49

° The <portType> element describes our operations: listDir and
changeCwd. Note that we support resource properties by deriving the port
type from the Resource Properties WSDL. (Note also that while this does
work with the software, WSRF officially does away with this older style of
using extending port types; technically, we should include the full definition.)
Both operations consist of an input and an output message, described above
with <message> tags.

° Because we are using the document/literal style of message exchange, the
messages must have one message part (even if the logical method takes
zero or multiple parameters or returns zero or multiple return values.)

° These "wrapper" message parts are described in the <!-- Requests and
responses --> section of the WSDL, which describes the schema format
for the request and response message parts. The listDir element has no
subfields because the logical listDir() method requires no parameters.
The listDirArrayResponse element serves as a wrapper for the return
value; an array of strings that denote the items in the current working
directory. The changeCwd element is a string type and the
changeCwdResponse element has no subfields because the method does
not return anything.

° Our resource properties (the current working directory) are described in the
<!-- Requests and responses --> section.

ProvisionDirQName.java

The ProvisionDirQName.java file is a convenient interface class containing
the QName URI/namespace constants relevant to our grid service. It should be
placed in the org/merrill/examples/services/provisiondir/impl
project folder. By having our service (and client) classes implement this
interface, we can reference these constants without having to replicate them
throughout the project. The source for this Java class is:

package org.merrill.examples.services.provisiondir.impl;

import javax.xml.namespace.QName;

public interface ProvisionDirQNames {
public static final String NS = "http://examples.merrill.org/provisiondir/Pro

visionDirService";

public static final QName RESOURCE_PROPERTIES = new QName(NS,
"ProvisionDirResourceProperties");

public static final QName RESOURCE_REFERENCE = new QName(NS,
"ProvisionDirResourceReference");

/* Insert ResourceProperty Qnames here. */

public static final QName RP_CWD = new QName(NS, "Cwd");

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 49 Using Eclipse to develop grid services

A change in state requires a change in one or more of these values, and vice
versa.

ProvisionDirService.java

The ProvisionDirService.java file is the service implementation that
provides the core functionality for exposing local directory information. It should
be placed in the
org/merrill/examples/services/provisiondir/impl project folder.
The source for this Java class is:

package org.merrill.examples.services.provisiondir.impl;

import java.rmi.RemoteException;

import org.globus.wsrf.ResourceContext;
import org.globus.wsrf.Resource;
import org.globus.wsrf.ResourceProperties;
import org.globus.wsrf.ResourceProperty;
import org.globus.wsrf.ResourcePropertySet;
import org.globus.wsrf.impl.ReflectionResourceProperty;
import org.globus.wsrf.impl.SimpleResourcePropertySet;

import org.merrill.examples.provisiondir.ProvisionDirService.ListDirArrayResponse;
import org.merrill.examples.provisiondir.ProvisionDirService.ChangeCwdResponse;

public class ProvisionDirService implements Resource, ResourceProperties {

/* Resource Property set */
private ResourcePropertySet propSet;

/* Insert resource properties here. */
private String cwd;

/* Constructor. Initializes RPs */
public ProvisionDirService()

throws RemoteException {

this.propSet = new SimpleResourcePropertySet(
ProvisionDirQNames.RESOURCE_PROPERTIES);

try {
/* Initialize Resource Properties here.*/
ResourceProperty cwdRP = new ReflectionResourceProperty(

ProvisionDirQNames.RP_CWD,
"Cwd",
this);

this.propSet.add(cwdRP);
setCwd("/");

} catch (Exception e) {
throw new RuntimeException(e.getMessage());

}

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 25 of 49

public ListDirArrayResponse listDir() throws RemoteException {

java.io.File currentDir = new java.io.File(cwd);
return new ListDirArrayResponse(currentDir.list());

}

public ChangeCwdResponse changeCwd(String newCwd) throws RemoteException {

setCwd(newCwd);
return new ChangeCwdResponse();

}

/* Insert get/setters for Resource Properties here.*/

public String getCwd() {
return cwd;

}

public void setCwd(String cwd) {
this.cwd = cwd;

}

/* Required by interface ResourceProperties */
public ResourcePropertySet getResourcePropertySet() {

return this.propSet;
}

}

There are several parts of this class that you should be aware of:

° Resource properties (such as our current working directory) are maintained
as private fields of the class (see the section under /* Insert resource
properties here. */).

° We need to initialize them and insert them into the set of resource properties
in the constructor.

° We need to create simple getter/setter methods for our resource properties
whose method names follow the get<field name> and set<field
name> pattern.

° Our operation methods (in this case the listDir() and changeCwd()
methods) will always have a single return type; name them after the input
and return types that were defined in the WSDL. Don't worry if the editor
shows red compilation errors -- we haven't generated the stub classes that
represent these types yet.

For more information about using WSRF classes, see the Understanding WSRF
tutorials under Resources on page47 .

deploy-jndi-config.xml

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 49 Using Eclipse to develop grid services

The deploy-jndi-config.xml file is the JNDI deploy file that enables the
GT4 WSRF implementation to locate the resource-home for this service. It
should be placed in the
/org/merrill/examples/services/provisiondir project folder. The
source for this configuration file is:

<?xml version="1.0" encoding="UTF-8"?>
<jndiConfig xmlns="http://wsrf.globus.org/jndi/config">

<service name="examples/ProvisionDirService">
<resource name="home" type="org.globus.wsrf.impl.ServiceResourceHome">
<resourceParams>

<parameter>
<name>factory</name>
<value>org.globus.wsrf.jndi.BeanFactory</value>

</parameter>

</resourceParams>

</resource>
</service>

</jndiConfig>

The file is pretty empty at the moment, but notice that two files must be
imported for all of this to work. Typical versions of the
WS-ResourceProperties.wsdl and WS-Addressing.xsd files reference
directories you might not have created on your machine, so for the sake of
simplicity, you can download simplified versions from the tutorial Resources on
page47 .

Now that we have the framework, let's start filling it out.

deploy-server.wsdd

The deploy-server.wsdd file is the WSDD configuration file that tells the
Web Service container (Tomcat) how to publish the Web service. It should be
placed in the /org/merrill/examples/services/provisiondir project
folder. The source for this configuration file is:

<?xml version="1.0" encoding="UTF-8"?>
<deployment name="defaultServerConfig"

xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<service name="examples/ProvisionDirService" provider="Handler" use="literal"
style="document">

<parameter name="className" value="org.merrill.examples.services.provision
dir.impl.ProvisionDirService"/>

<wsdlFile>share/schema/examples/ProvisionDirService/ProvisionDir_ser
vice.wsdl</wsdlFile>

<parameter name="allowedMethods" value="*"/>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 27 of 49

<parameter name="handlerClass" value="org.globus.axis.providers.RPCProv
ider"/>

<parameter name="scope" value="Application"/>
<parameter name="providers" value="GetRPProvider DestroyProvider"/>
<parameter name="loadOnStartup" value="true"/>

</service>

</deployment>

At this point, the package explorer should resemble Figure 16.

Figure 16. Package explorer

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 49 Using Eclipse to develop grid services

Section 5. Working with a WS-Resource: Getting
properties

Launch configuration overview

In this section, we'll cover the process of creating the Ant launch configuration
necessary for building and deploying our grid service.

A launch configuration is a mechanism that Eclipse provides for executing one
or more Ant buildfile targets. For the ProvisionDirService project, we want
to create a launch configuration that, with the click of a mouse, will
automatically:

° Generate the service stubs and parameter data structure classes
° Perform some tweaking to the service WSDL
° Assemble the service GAR, which contains all the files and information the

Web Services container needs to deploy our service
° Deploy the GAR into the GT4 directory tree
° Deploy the GT4 WSRF into Tomcat

The globus-build-service and WS-Core distributions contain several Ant
buildfiles that can cumulatively do all of these tasks, but we will need to create a
"master" Ant buildfile to orchestrate them all from within one Launch
Configuration.

buildservice.xml

The buildservice.xml Ant buildfile serves as the "master" buildfile that
coordinates activities from the globus-build-service and WS-Core buildfiles. This
file should be placed in the project root directory. The source for this buildfile is:

<?xml version="1.0"?>
<!--
-->

<project default="all" name="Grid Service Buildfile" basedir=".">
<description>

Grid Service Buildfile
</description>

<property environment="env"/>

<target name="all">
<ant antfile="${build.gar}" target="clean"/>
<ant antfile="${build.gar}" target="all"/>
<ant antfile="${build.packages}" target="deployGar"/>
<ant antfile="${build.tomcat}" target="deploySecureTomcat" dir="/Dev/GTK/sha

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 29 of 49

re/globus_wsrf_common/tomcat" />
</target>

</project>

This "master" buildfile calls the following external buildfiles:

° The Globus-Build-Service build.xml Ant buildfile (which resides where it was
unzipped in /dev/GTK/etc/)

° The WS-Core build-packages.xml Ant buildfile
(/Dev/GTK/share/globus_wsrf_common/build-packages.xml)

° The WS-Core tomcat.xml Ant buildfile
(/Dev/GTK/share/globus_wsrf_common/tomcat/tomcat.xml)

buildservice.properties

Before we can create a launch configuration for this buildservice.xml
buildfile, we need to create a buildservice.properties file that contains
the name=value properties specific to this service and needed to guide the
various build tasks through the .GAR-creation/deployment process. This build
buildservice.properties file should be added to the project's root
directory. The source for this file is:

package=com.merrill.examples.services.provisiondir
interface.name=ProvisionDir
package.dir=org/merrill/examples/services/provisiondir
schema.path=examples/ProvisionDirService
service.name=ProvisionDirService
gar.filename=org_merrill_examples_provisiondir

build.gar=/dev/GTK/etc/build.xml
build.packages=/Dev/GTK/share/globus_wsrf_common/build-packages.xml
build.tomcat=/Dev/GTK/share/globus_wsrf_common/tomcat/tomcat.xml
gar.name=/Dev/eclipse/workspace/ProvisionDirService/org_merrill_examples_provisiondir
tomcat.dir=/Dev/jakarta-tomcat-5.0.28

The package explorer should now resemble Figure 17:

Figure 17. Updated package explorer

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 49 Using Eclipse to develop grid services

Create the launch configuration

With this Ant buildfile now linked into the project and a corresponding
.properties file created, we can now create a launch configuration that will
create the .GAR for this service (as well as flesh out the other necessary
artifacts). To do this, right-click on the buildservice.xml file and select Run
> External Tools... as shown in Figure 18.

Figure 18. Run > External Tools option

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 31 of 49

If necessary, select "Ant Build" from the Configurations pane and click New.
then select the ProvisionDirService buildservice.xml and rename it
"Build and Deploy ProvisionDir" and enter the project root,
${workspace_loc:/ProvisionDirService} as the Base Directory field in
the Main tab, as shown in Figure 19.

Figure 19. External Tools dialog

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 32 of 49 Using Eclipse to develop grid services

Launch configuration properties

In the Properties tab, deselect the "Use global properties..." checkbox and click
Add > Files... to add the buildservice.properties file from the root of the
project, as shown in Figure 20.

Figure 20. Properties tab of the External Tools dialog

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 33 of 49

Adding the launch configuration to External Tools
toolbar button

Finally, in the Common tab, select the External Tools checkbox to display this
configuration in the favorites drop-down menu when clicking on the External
Tools icon in the toolbar (see Figure 21). Close (and save) the launch
configuration.

Figure 21. Adding the Launch Configuration to External Tools toolbar
button

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 34 of 49 Using Eclipse to develop grid services

Click Close.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 35 of 49

Section 6. Generate stubs and deploy the grid service

Building and deploying

Now that we've completed the project setup, we can begin the iterative process
of building/running/debugging/editing.

We can build and deploy our grid service with one click of the mouse by clicking
the External Tools icon > Build and Deploy ProvisionDir launch
configuration from the main toolbar (see Figure 22). This will kick off our Ant
task and generate all of the remaining artifacts, create the service GAR, deploy
the GAR into WSRF, and deploy WSRF into Tomcat.

Figure 22. Clicking the Build and Deploy ProvisionDir launch
configuration from the main toolbar

You should see the output from the build process in the Console View. The
Console View will show you any compilation or assembly errors (if any) or a
"Build Successful," as shown in Figure 23.

Figure 23. Build Successful message

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 36 of 49 Using Eclipse to develop grid services

Updating the Build Path to Include Stub Classes

Once we've generated our stubs, we can configure the Libraries tab of the Java
Build Path page in the project Properties to put the stub class folder on the build
path. Doing this will silence the Editor View's red compile errors. Go to the
project Properties, select the Java Build Path page, and click the Add Class
Folder... button as shown in Figure 24.

Figure 24. Edit Class Folder dialog

Click OK.

Attach the source to the stub classes

We can now attach the source to the stub classes by right-clicking the "Source
Attachment" item for the classes folder and specifying the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 37 of 49

/ProvisionDir/build/stubs/src folder in the dialog shown in Figure 25.

Figure 25. Source attachment configuration dialog

Click OK, then click OK again to finish the configuration.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 38 of 49 Using Eclipse to develop grid services

Section 7. Running and Debugging using the Tomcat
container

Running the Web Services container

Running (and stopping) the grid service is as easy as starting the Tomcat
container by clicking the Start/Stop/Restart Tomcat toolbar buttons.

Figure 26. Tomcat toolbar buttons

This fires up Tomcat (you can monitor its output in the Console View), which
runs the GTK WSRF Web application and, therefore, exposes our active service
to the outside world.

In the next panel, we create a (very simple) client to test and debug our grid
service.

A test client

The Client.java file is a simple command-line class that performs a couple
of simple operations on our grid service. This file is not necessary for the
development of the service; any WSRF-based client (perhaps one written in
Perl using WSRF::Lite) can be used to invoke our service. Client.java should be
placed in the org/merrill/examples/clients/provisiondir project
folder. The source for this configuration file is:

package org.merrill.examples.clients.provisiondir;

import org.apache.axis.message.addressing.Address;
import org.apache.axis.message.addressing.EndpointReferenceType;
import org.globus.axis.util.Util;

import org.merrill.examples.provisiondir.ProvisionDirService.ListDir;
import org.merrill.examples.provisiondir.ProvisionDirService.ListDirArrayResponse;
import org.merrill.examples.provisiondir.ProvisionDirService.ChangeCwdResponse;
import org.merrill.examples.provisiondir.ProvisionDirService.ProvisionDirPortType;
import org.merrill.examples.provisiondir.ProvisionDirService.service.ProvisionDir
ServiceAddressingLocator;
import org.merrill.examples.services.provisiondir.impl.*;

import org.oasis.wsrf.properties.GetResourcePropertyResponse;

public class Client implements ProvisionDirQNames {
static {

Util.registerTransport();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 39 of 49

}

public static void main(String[] args) {
ProvisionDirServiceAddressingLocator locator =

new ProvisionDirServiceAddressingLocator();

try {
String serviceURI=args[0];

// Create endpoint reference to singleton service
EndpointReferenceType endpoint = new EndpointReferenceType();
endpoint.setAddress(new Address(serviceURI));
ProvisionDirPortType provisionDir =

locator.getProvisionDirPortTypePort(endpoint);

// Get PortType
provisionDir = locator.getProvisionDirPortTypePort(endpoint);

// Access resource properties (get CWD)
GetResourcePropertyResponse cwd = provisionDir.getResourcePro

perty(RP_CWD);
System.out.println("\nCurrent Working Directory (Cwd RP): " +

cwd.get_any()[0].getValue());

// Perform a listing
ListDirArrayResponse listings = provisionDir.listDir(new Lis

tDir());
String[] array = listings.getA();
System.out.println("\nListing:");
for (int i = 0; i < array.length; i++) {

System.out.println("\t" + array[i]);
}

// change the current working directory
provisionDir.changeCwd("/temp");

// Access resource properties (get CWD)
cwd = provisionDir.getResourceProperty(RP_CWD);
System.out.println("\nCurrent Working Directory (Cwd RP): " +

cwd.get_any()[0].getValue());

// Perform a listing
listings = provisionDir.listDir(new ListDir());
array = listings.getA();
System.out.println("\nListing:");
for (int i = 0; i < array.length; i++) {

System.out.println("\t" + array[i]);
}

} catch (Exception e) {
e.printStackTrace();

}
}

}

The operation of the client is pretty straightforward:

° Using the generated locator class, the client creates a proxy stub to the
remote ProvisionDirService.

° The client retrieves the Cwd resource property and displays it.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 40 of 49 Using Eclipse to develop grid services

° The client invokes the listDir() operation and retrieves the wrapper
datastructure that contains the list of strings denoting the contents of the
current working directory.

° The client invokes the changeCwd() operation to change the resource's
current directory.

° The client retrieves the new Cwd resource property and displays it again.
° The client invokes the listDir() again and displays the contents of the

new current working directory.

Executing the test client

To test the client, simply right-click the Client.java file and select Run >
Run... from the pop-up menu (See Figure 27). In the Run dialog that is
displayed, select the Arguments tab and enter
http://127.0.0.1:8080/wsrf/services/examples/ProvisionDirService
in the Program Arguments: textbox.

Figure 27. Run dialog

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 41 of 49

Click Close to save the run configuration for this file. Once this is done, we can
repeatedly run the client application by simply right-clicking the Client.java
file and selecting Run > Java Application:

Figure 28. Run Java Application

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 42 of 49 Using Eclipse to develop grid services

The output from the client application shows up in the Console view (see Figure
29).

Figure 29. Console view

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 43 of 49

(Note: Every time we rebuild/deploy the grid service using the Launch
Configuration, right-click the project and select Refresh from the pop-up menu
to re-compile the client .class bytecode because it gets cleaned up during the
rebuild/deploy process.)

Debugging in Tomcat

Go ahead and set a breakpoint in ProvisionDirService.listDir() and
rerun the same client program. The Eclipse debugger traps the breakpoint and
switches into the Debug Perspective.

Figure 30. Eclipse Debugger

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 44 of 49 Using Eclipse to develop grid services

Making changes

Now to change our server code, we just update our code and save the file. And
that's it. It isn't necessary to build or deploy the GAR or restart Tomcat.

For example, change the listDir() method to read:

public ListDirArrayResponse listDir() throws RemoteException {

java.io.File currentDir = new java.io.File(cwd);
String[] listings = currentDir.list();
for (int i = 0; i < listings.length; i++) {

java.io.File listing = new java.io.File(currentDir, list
ings[i]);

listings[i] = listings[i] + " " + listing.length();
}
return new ListDirArrayResponse(listings);

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 45 of 49

Save the file. Tomcat will already be running the newly updated grid service
logic. (No need to even re-run the launch configuration or restart Tomcat.) To
test it, re-run the client with a click of the mouse, and you'll see output with file
sizes now (See Figure 31).

Figure 31. Updated console

Note: If any modifications change the service interface (say, if the WSDL is
updated), rebuild using the "Build and Deploy ProvisionDir" launch configuration
and restart Tomcat. (Two additional mouse clicks.)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 46 of 49 Using Eclipse to develop grid services

Section 8. Summary

Summary

This tutorial showed how the development of a GT4 grid service can be vastly
simplified by using the Eclipse Java IDE to coordinate the iterative process of
writing, deploying, running, and debugging. We gave a step-by-step
walkthrough of how to create, configure, and use the ProvisionDirService
Java Project, focusing on the following areas:

° Setting up Eclipse, GT4, Tomcat, and the other necessary plug-ins and tools
° Creating and configuring the Eclipse project in preparation for the source

files
° Adding the source files (and reviewing their major features)
° Creating the build/deploy Launch Configuration that orchestrates the

automatic generation of the remaining artifacts, assembling the GAR, and
deploying the grid service into the Web services container

° Using the Launch Configuration to generate and deploy the grid service
° Running and debugging the grid service in the Tomcat container

The significant thing to keep in mind is that, once the project is configured
correctly and the service is running inside Tomcat, any changes made to the
service implementation will be immediately reflected in the running grid service.
That convenience -- in addition to the fact that you never have to leave the
Eclipse interface -- makes for a winning combination among Eclipse, Tomcat,
and GT4.

Resources

This tutorial draws upon a variety of different tools and technologies. Here are
some resources to get started with.

Source files used for the ProvisionDirService:

° ProvisionDir.wsdl -- The ProvisionDir service interface
° ProvisionDirQNames.java -- A convenient interface class containing the

QName URI/namespace constants that our service (and client) classes
implement

° ProvisionDirService.java -- The service implementation that provides the
core functionality for exposing local directory information

° deploy-server.wsdd -- The WSDD configuration file that tells the Web service
container (Tomcat) how to publish the Web service

° deploy-jndi-config.xml -- The JNDI deploy file that enables the GT4 WSRF
implementation to locate the resource-home for this service

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 47 of 49

° buildservice.xml -- The "master" buildfile that builds and deploys the grid
service into the Tomcat container

° Client.java -- A simple client test program

° Download the gr-eclipsesrc.zip for this tutorial.
Some good starting places (with plenty of further jumping-off points):

WSRF and related specifications:

° The WSRF specification working drafts maintained by OASIS
° The four-part " Understanding WSRF" developerWorks tutorial
° The Globus Alliance overview of WSRF (http://www.globus.org/wsrf/)

Globus Toolkit V4 (http://www-unix.globus.org/toolkit/) and The Globus Alliance
(http://www.globus.org/) :

° Globus Toolkit 4 Programmer's Tutorial (http://gdp.globus.org/gt4-tutorial/)
° developerWorks "Globus Toolkit 4 Early Access: WSRF"
° GT4 documents and manuals (http://www-unix.globus.org/toolkit/docs/4.0/)
° GT4 development tools (http://gsbt.sourceforge.net/) , such as the

up-and-coming Eclipse GT4 IDE plug-in and the globus-build-service tools

The Eclipse Platform (http://www.eclipse.org/) :

° Eclipse project FAQ
° developerWorks' "Introducing Eclipse" article

Apache Tomcat (http://jakarta.apache.org/tomcat/) and the Sysdeo Tomcat
Plug-in:

° Sysdeo Tomcat Plug-in (http://www.sysdeo.com/eclipse/tomcatPlugin.html)
° The Power of Three -- Eclipse, Tomcat, and Struts

(http://javaboutique.internet.com/tutorials/three/)

You can also find more helpful resources in the IBM developerWorks Grid
computing zone (http://www.ibm.com/developerworks/grid/) .

Feedback

Please let us know whether this tutorial was helpful to you and how we could
make it better. We'd also like to hear about other tutorial topics you'd like
developerWorks to cover.

For questions about the content of this tutorial, contact the author, Duane
Merrill, at .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 48 of 49 Using Eclipse to develop grid services

gr-eclipsesrc.zip
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www-128.ibm.com/developerworks/edu/gr-dw-gr-wsrf1-i.html
http://www.globus.org/wsrf/
http://www-unix.globus.org/toolkit/
http://www.globus.org/
http://gdp.globus.org/gt4-tutorial/
http://www.ibm.com/developerworks/grid/library/gr-gt4early/
http://www-unix.globus.org/toolkit/docs/4.0/
http://gsbt.sourceforge.net/
http://www.eclipse.org/
http://www.eclipse.org/eclipse/faq/eclipse-faq.html
http://www-128.ibm.com/developerworks/linux/library/l-eclipsea.html
http://jakarta.apache.org/tomcat/
http://www.sysdeo.com/eclipse/tomcatPlugin.html
http://javaboutique.internet.com/tutorials/three/
http://www.ibm.com/developerworks/grid/
http://www.ibm.com/developerworks/grid/

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Using Eclipse to develop grid services Page 49 of 49

http://www-106.ibm.com/developerworks/xml/library/x-toot/

	Table of contents
	Introduction
	Who should take this tutorial?
	What is this tutorial about?
	Prerequisites
	About the author

	Setting up
	The Architecture
	Eclipse
	Tomcat
	Sysdeo Tomcat Launcher
	GT4 WS-Core
	The globus-build-service

	Creating and configuring the project
	Create a new project
	Make the project a Tomcat project
	Add project source to Tomcat source path
	Include the WS-Core classes as the GT4 Library
	Create the GT4 library
	Finish the configuration
	Adding folders and packages
	Setting the output destination

	Adding the project files
	ProvisionDir.wsdl
	ProvisionDirQName.java
	ProvisionDirService.java
	deploy-jndi-config.xml
	deploy-server.wsdd

	Working with a WS-Resource: Getting properties
	Launch configuration overview
	buildservice.xml
	buildservice.properties
	Create the launch configuration
	Launch configuration properties
	Adding the launch configuration to External Tools toolbar button

	Generate stubs and deploy the grid service
	Building and deploying
	Updating the Build Path to Include Stub Classes
	Attach the source to the stub classes

	Running and Debugging using the Tomcat container
	Running the Web Services container
	A test client
	Executing the test client
	Debugging in Tomcat
	Making changes

	Summary
	Summary
	Resources
	Feedback

